on the tutte polynomial of benzenoid chains

نویسندگان

g. fath-tabar

z. gholam-rezaei

a. r. ashrafi

چکیده

the tutte polynomial of a graph g, t(g, x,y) is a polynomial in two variables defined for every undirected graph contains information about how the graph is connected. in this paper a simple formula for computing tutte polynomial of a benzenoid chain is presented.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the tutte polynomial of benzenoid chains

The Tutte polynomial of a graph G, T(G, x,y) is a polynomial in two variables defined for every undirected graph contains information about how the graph is connected. In this paper a simple formula for computing Tutte polynomial of a benzenoid chain is presented.

متن کامل

Hosoya polynomials of random benzenoid chains

Let $G$ be a molecular graph with vertex set $V(G)$, $d_G(u, v)$ the topological distance between vertices $u$ and $v$ in $G$. The Hosoya polynomial $H(G, x)$ of $G$ is a polynomial $sumlimits_{{u, v}subseteq V(G)}x^{d_G(u, v)}$ in variable $x$. In this paper, we obtain an explicit analytical expression for the expected value of the Hosoya polynomial of a random benzenoid chain with $n$ hexagon...

متن کامل

The Tutte polynomial

This is a close approximation to the content of my lecture. After a brief survey of well known properties, I present some new interpretations relating to random graphs, lattice point enumeration, and chip firing games. I then examine complexity issues and concentrate in particular, on the existence of randomized approximation schemes. © 1999 John Wiley & Sons, Inc. Random Struct. Alg., 15, 210–...

متن کامل

Fourientations and the Tutte polynomial

for α, γ ∈ {0, 1, 2} and β , δ ∈ {0, 1}. We introduce an intersection lattice of 64 cut–cycle fourientation classes enumerated by generalized Tutte polynomial evaluations of this form. We prove these enumerations using a single deletion–contraction argument and classify axiomatically the set of fourientation classes to which our deletion–contraction argument applies. This work unifies and exten...

متن کامل

The multivariate arithmetic Tutte polynomial

We introduce an arithmetic version of the multivariate Tutte polynomial recently studied by Sokal, and a quasi-polynomial that interpolates between the two. We provide a generalized Fortuin-Kasteleyn representation for representable arithmetic matroids, with applications to arithmetic colorings and flows. We give a new proof of the positivity of the coefficients of the arithmetic Tutte polynomi...

متن کامل

On Tutte polynomial uniqueness of twisted wheels

A graph G is called T -unique if any other graph having the same Tutte polynomial as G is isomorphic to G. Recently, there has been much interest in determining T -unique graphs and matroids. For example, de Mier and Noy [A. de Mier, M. Noy, On graphs determined by their Tutte polynomials, Graphs Combin. 20 (2004) 105–119; A. de Mier, M. Noy, Tutte uniqueness of line graphs, Discrete Math. 301 ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
iranian journal of mathematical chemistry

ناشر: university of kashan

ISSN 2228-6489

دوره 3

شماره 2 2012

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023